

MONOARYL AND CYCLOHEXENONE GLYCOSIDES FROM NEEDLES OF *PINUS SYLVESTRIS**[†]

ROLF ANDERSSON and LENNART N. LUNDGREN

Department of Chemistry, Swedish University of Agricultural Sciences, P. O. Box 7015, 75007 Uppsala, Sweden

(Received 5 June 1987)

Key Word Index—*Pinus sylvestris*; Pinaceae; needles; monoaryl glycoside; cyclohexenone glycoside; β -hydroxypropiovanillone; coniferyl alcohol; dihydrovomifolio; vomifolio.

Abstract—The 4'-*O*- β -D-glucopyranosides of 4-(4'-hydroxyphenyl)-2-butanone [rheosmin] and its 3'-methoxy derivative [zingerone]; the 3'-*O*- β -D-glucopyranosides of 3-hydroxy-1-(4'-hydroxy-3'-methoxyphenyl)-1-propanone [β -hydroxypropiovanillone] and *trans*-3-hydroxy-1-(4'-hydroxy-3'-methoxyphenyl) propene [*trans*-coniferyl alcohol]; and the 3'-*O*- β -D-glucopyranosides of (4S,3'R)-4-hydroxy-4-(3'-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexenone [dihydrovomifolio] and (4S,3'R)-4-hydroxy-4-(3'-hydroxy-*trans*-1'-butenyl)-3,5,5-trimethyl-2-cyclohexenone [vomifolio] have been isolated from the needles of *Pinus sylvestris* and identified.

INTRODUCTION

Low *M*, phenolic compounds in needles of *Pinus sylvestris* and *Picea abies* have been the subject of considerable attention in our laboratory for many years. Up to now, a series of monoaryls, flavonoids, lignans and stilbenes, mainly present as glycosides, have been isolated and identified. The results obtained up to 1982 have been reviewed [1]. In addition, the phenolics present in the needles of the Chinese pine *Pinus massoniana* have recently been investigated [2-4].

In our current screenings for biochemical markers among the phenolics, for use in chemosystematic and genetic studies, a comprehensive HPLC analysis of extracts from various clones of *P. Sylvestris* and *P. abies* were carried out. Several compounds were detected from both species, differing significantly in concentration between clones. The results have recently been presented briefly [5]. However, among the detected compounds, we observed several, that were unknown judging from their HPLC retention. Accordingly, we decided to make complementary isolation and characterization studies of the phenolics and other constituents that absorb UV light. The present paper deals with the isolation and identification of monoaryl and cyclohexenone glucosides from *P. sylvestris*. The latter are structurally related to abscisic acid. A presentation of isolated flavonoids and stilbenes will be published elsewhere.

RESULTS AND DISCUSSION

Four monoaryl (1-4) and two cyclohexenone (5, 6) glucosides were isolated from the aqueous ethanol extract of the needles by successive CC on Sephadex LH-20 (H_2O as eluent) and silica gel and (1-3, 5, 6 by) semipreparative HPLC. Compounds 1 and 2 were identified as the *O*- β -D-

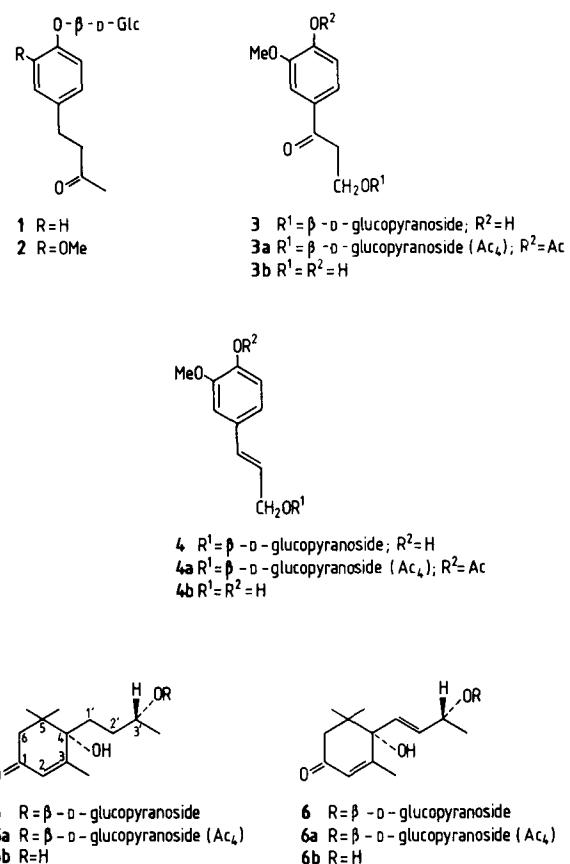
glucopyranosides of the C_6-C_4 compounds rheosmin and zingerone. The 1H NMR spectra and $[\alpha]_D$ for 1, 2 and their tetraacetates agreed well with data reported previously for needles of *P. contorta* [6]. Moreover, enzymatic hydrolysis of 1 or 2 yielded equimolar amounts of D-glucose and rheosmin or zingerone, respectively, identified by comparison with synthetic samples. [7].

Compound 3 was characterized by 1H NMR as a glycoside containing a 1,2,4-trisubstituted benzene ring and a methoxyl group. The aromatic pattern showed close resemblance to the spectrum of authentic acetovanillone available in our laboratory. The anomeric proton gave rise to a doublet at δ 4.32 with $J = 7.8$ Hz. Enzymatic hydrolysis yielded D-glucose and the aglycone 3b, $[M]^+ m/z$ 196, identified by 1H NMR as β -hydroxypropiovanillone by comparison with literature data [8]. The C-2 and C-3 protons of 3b gave rise to triplets at δ 3.19 and 4.02 with $J = 5.3$ Hz. However, those of the pentaacetate 3a showed an ABCD system at 400 MHz, which indicating linkage of the C-3 hydroxyl group to glucose. The anomeric doublet at δ 4.59 with $J = 7.8$ Hz, consistent with an aliphatic β -glucopyranoside, and the occurrence of an aromatic acetoxy signal at δ 2.34 confirmed this linkage. Thus, compound 3 is β -hydroxypropiovanillone 3'-*O*- β -D-glucopyranoside. To our knowledge, this glucoside has not been reported previously.

Compound 4 was isolated as an amorphous powder and, notably, gave a bright red colour on TLC with 50% sulphuric acid. 1H NMR suggested a guaiacylpropene glycoside. The olefinic protons in the side-chain were represented by further split doublets at δ 6.19 and 6.58 with $J = 15.8$ Hz consistent with the *trans*-configuration. Enzymatic hydrolysis resulted in equimolar amounts of D-glucose and the aglycone 4b, identified as *trans*-coniferyl alcohol by comparison (1H NMR, mass spectrum, TLC) with an authentic sample. On the other hand 4 was found to differ from authentic coniferin available in our laboratory. The 1H NMR spectrum of the pentaacetate 4a showed one aromatic acetoxy signal and shifts for the acetylated glucose moiety in close agreement with those

* Part 13 in the series 'The Constituents of Conifer Needles'.
For part 12, see ref. [4].

for **3a**. On the basis of this evidence, **4** was formulated as *trans*-coniferyl alcohol 3-*O*- β -D-glucopyranoside. The analogous *cis*-compound has previously been isolated from the bark of *Fagus silvatica* [9]. To our knowledge the *trans*-isomer has not been reported as a plant constituent. However, **4** has been tentatively identified as a product from a reaction of coniferyl alcohol and UDP-glucose catalysed by a glucosyltransferase [10]. The isomeric glucoside coniferin, which seems to be ubiquitous in the cambium of conifers and essential in lignin biosynthesis [11], was not found in the needle extract. The aglycones **3b** and **4b** have been isolated after microbial degradation of guaiacylglycerol- β -coniferyl ether [8]. Dilignol glucosides, structurally related to the latter compound, occur frequently in pine needles [1, 4], and it seems reasonable that **3** and **4** might be involved in their biosynthesis. Compound **3** could also be a biosynthetic product of guaiacylglycerol 3-*O*- β -D-glucoside, previously isolated in our laboratory from needles of *P. sylvestris* as a mixture of *erythro*- and *threo*-isomers [12]. Essentially, this requires only a dehydration of the latter glucosides.


Compound **5** was isolated as a colourless oil. Enzymatic hydrolysis yielded equimolar amounts of D-glucose and the aglycone **5b**, which was identified (¹H and ¹³C NMR) as the known compound dihydrovomifoliol by comparison with literature data [13, 14]. On hydrolysis, the ¹³C signal for C-3' moved upfield by 7.5 ppm and C-2' downfield by 0.2–1.7 ppm (the assignments for C-1' and C-2' may be reversed), which fully confirmed the 3'-*O* position of the glucose [15]. Acetylation produced the tetraacetate **5a**. The sterically hindered hydroxyl group at C-4 remained intact. In the ¹H NMR spectrum of **5a** the anomeric proton appeared as a doublet at δ 4.50 with *J* = 8.0 Hz. Thus, **5** was identified as dihydrovomifoliol-*O*- β -D-glucopyranoside, which to our knowledge, has not been reported previously. The aglycone **5b** has, however, been found in *Podocarpus blumei* [13] and *Cannabis sativa* [14].

Compound **6** was identified as vomifoliol 3'-*O*- β -D-glucopyranoside or roseoside, which has previously been found in *Vinca rosea* [16], *Nicotiana tabacum* [17], *Cydonia oblonga* and *Betula alba* [18]. The unsaturated part of the side-chain was documented by ¹³C NMR resonances at δ 135.4 and 131.7 and a ¹H NMR singlet (two protons) at δ 5.85. Enzymatic hydrolysis yielded D-glucose and the aglycone vomifoliol **6b**. This compound was first isolated from *Rauvolfia vomitoria* [19].

Compounds **5b** and **6b** are structurally related to the plant growth regulator *S*-(+)-abscisic acid. As shown [20, 21] all the three compounds have the same absolute configuration at C-4. The stereochemistry of the second asymmetrical centre in **5b** and **6b** has been established to 3'R [20]. Compound **6b** has been reported to exhibit properties similar to those of (\pm)-abscisic acid on the stomatal aperture in epidermal strips from *Eichhornia crassipes* [22] and is believed to play an important role as an endogenous regulator of the stomatal aperture.

EXPERIMENTAL

General. NMR spectra were measured at 400 (¹H) or 22.5 MHz (¹³C). Chemical shifts are given on the δ (ppm) scale with TMS as int. std. ¹³C NMR assignments were made partly through comparison of the chemical shifts with the data published for similar compounds [2, 23] and partly using the DEPT technique.

The ¹H NMR data for the individual protons H-1''–H-6'' in the glucose moiety are not listed for compounds 4a–6a. They were identical, or very close to, the values listed for the same protons in 3a, except for *J*_{5'',6''b} = 2.6 and *J*_{5'',6''b} = 4.4 Hz for compounds 5a and 6a. The data for the strongly coupled protons in 3, 5b and 6a were checked by computer spin-simulation and adjusted if necessary. MS were recorded on a quadrupole instrument at 70 eV. TLC was performed on silica gel HF₂₅₀ plates.

Plant material. Needles from a 15-year-old specimen of *P. sylvestris* were collected in March 1986, near Uppsala, Sweden and immediately deep-frozen.

Extraction and isolation. Needles (dry wt 0.5 kg) were homogenized in 96% EtOH (3 × 2 l) and aq. 80% EtOH (3 × 2 l) for 6 × 5 min at room temp. The combined ext. was concd *in vacuo* at 30°, dil. with H₂O (1 l) and extracted with petrol (2 × 0.5 l). After evapn of the aq. phase at 30°, the residue (101 g) was chromatographed over Sephadex LH-20, with H₂O and aq. EtOH as eluents, with stepwise increasing EtOH content. Twelve fractions (A–M) were collected. Fractions B–D (H₂O as eluent) were fractionated by CC on silica gel (230–400 mesh), using CHCl₃–MeOH–H₂O in different proportions and MeCOEt–H₂O (10:1) as eluents. From fractions B, crude 1 (120 mg), 2 (150 mg), 5 (125 mg) and 6 (125 mg); from fraction C, crude 3 (176 mg); and from fraction D, pure 4 (373 mg) were obtained. Parts of the crude fractions were subfractionated by HPLC on a NOVA-PAK C18 Radial-PAK column (Waters Associates). Pure compounds 1 (33 mg), 2 (18 mg) and 3 (12 mg) (35% aq. MeOH as eluent), 5 (10 mg) and 6 (15 mg) (MeOH–HCO₂H–H₂O 25:1:75 as eluent) were obtained.

Enzymatic hydrolysis of compounds 1–6 was performed in aq. solns with crude pectinase from *Aspergillus niger* (Sigma Chemical Co.) at room temp. overnight. The aglycone was extracted

with EtOAc. The sugar in the aq. phase was purified on a SEP-PAK C18 cartridge (Waters Associates), with H₂O as eluent and was identified by its optical rotation and the GC-R_f of the corresponding alditol acetate.

3. $[\alpha]_D^{20} = -9.5^\circ$ (MeOH; *c* 1.2). $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 228, 275, 306. ¹H NMR (CD₃OD): δ 3.1–3.9 (*m*, H-2, H-2'–H-6'), 3.90 (*s*, OMe), 3.99 (*dt*, H-3b), 4.26 (*dt*, H-3a), 4.32 (*d*, H-1'), 6.86 (*d*, H-5'), 7.54 (*d*, H-2'), 7.60 (*dd*, H-6'); *J*: 2a,3a = 2a,3b = 2b,3a = 2b,3b = 6.4; 3a,3b = 10.1; 2',6' = 2.0; 5',6' = 8.3; 1",2" = 7.8 Hz. The signals from the methylene protons at C-2 were overlapped by those from the solvent CD₃OD.

Acetylation (Ac₂O–pyridine) of 3 (3 mg) gave the pentaacetate 3a (4 mg). $[\alpha]_D^{20} = -14.5^\circ$ (CHCl₃; *c* 0.4). ¹H NMR (CDCl₃): δ 1.91, 1.99, 2.03, 2.08 (4*s*, 4OAc), 2.34 (*s*, OAc), 3.12 (*ddd*, H-2b), 3.36 (*ddd*, H-2a), 3.71 (*ddd*, H-5'), 3.89 (*s*, OMe), 4.04 (*ddd*, H-3b), 4.12 (*dd*, H-6'b), 4.24 (*ddd*, H-3a), 4.27 (*dd*, H-6'a), 4.59 (*d*, H-1'), 4.96 (*dd*, H-2'), 5.08 (*dd*, H-4'), 5.20 (*dd*, H-3'), 7.13 (*d*, H-5'), 7.55 (*dd*, H-6'), 7.56 (*br s* H-2'); *J*: 2a,2b = 17.4; 2a,3a = 6.5; 2a,3b = 7.8; 2b,3a = 5.4; 2b,3b = 6.0; 3a,3b = 9.8; 2',6' = 2.0; 5',6' = 8.4; 1",2" = 7.8; 2",3" = 3",4" = 9.4; 4",5" = 9.9; 5",6'a = 4.9; 5",6'b = 2.3; 6'a,6'b = 12.3 Hz.

Hydrolysis of 3 (5 mg) yielded 3b (2 mg). MS (probe) *m/z* (rel. int.): 196 [M]⁺ (23), 178 (4), 166 (3), 151 (100), 137 (4), 123 (20), 108 (9). D-glucose (2 mg) was isolated from the aq. phase.

4. $[\alpha]_D^{20} = -16.9^\circ$ (MeOH; *c* 4.1). $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 267, 304 sh. ¹H NMR (CD₃OD): δ 3.15–3.90 (*m*, H-2'–H-6'), 3.86 (*s*, OMe), 4.29 (*ddd*, H-3b), 4.36 (*d*, H-1'), 4.49 (*ddd*, H-3a), 6.19 (*ddd*, H-2), 6.58 (*ddd*, H-1), 6.73 (*d*, H-5'), 6.85 (*dd*, H-6'), 7.01 (*d*, H-2'); *J*: 1,2 = 15.8; 1,3a = 1.5; 1,3b = 1.3; 2,3a = 5.9; 2,3b = 6.9; 3a,3b = 12.4; 2',6' = 2.0; 5',6' = 8.1; 1",2" = 7.8 Hz. Acetylation (Ac₂O–pyridine) of 4 (5 mg) yielded the pentaacetate 4a (8 mg). ¹H NMR (CDCl₃): δ 2.02, 2.03, 2.06, 2.09 (4*s*, 4OAc), 2.32 (*s*, OAc), 3.70–5.25 (*m*, H1"–H6"), 3.85 (*s*, OMe), 4.27 (*ddd*, H-3b), 4.50 (*ddd*, 3a), 6.17 (*ddd*, H-2), 6.56 (*ddd*, H-1), 6.94 (*dd*, H-6'), 6.98 (*d*, H-2'), 6.99 (*d*, H-5'); *J*: 1,2 = 15.9; 1,3a = 1.5; 1,3b = 1.4; 2,3a = 5.4; 2,3b = 6.4; 3a,3b = 13.0; 2',6' = 1.8; 5',6' = 8.1 Hz. Hydrolysis of 4 (30 mg) yielded 4b (12 mg) and D-glucose (12 mg).

5. $[\alpha]_D^{20} = -4.4^\circ$ (MeOH; *c* 0.8). $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 242. ¹H NMR (CD₃OD): δ 1.01 (*s*, 5-Me_b), 1.09 (*s*, 5-Me_a), 1.17 (*d*, 3'-Me), 1.48 (*m*, H-2'b), 1.78 (*m*, H-2'a), 1.82 (*m*, H-1'b), 1.98–2.08 (*m*, H-1'a), 2.03 (*d*, 3-Me), 2.14 (*dd*, H-6b), 2.62 (*d*, H-6a), 3.10–3.90 (*m*, H-2'–H-6'), 3.81 (*m*, H-3'), 4.30 (*d*, H-1'), 5.83 (*dq*, H-2'); *J*: 2,3-Me = 1.3; 2,6b = 1.1; 6a,6b = 18.1; 3',3'-Me = 6.2; 1",2" = 7.8 Hz. ¹³C NMR (CD₃OD): δ 201.0 (C-1), 171.6 (C-3), 126.7 (C-2), 102.4 (C-1'), 79.3 (C-4), 78.2 (C-5'), 77.9 (C-3'), 76.3 (C-3'), 75.2 (C-2'), 71.9 (C-4'), 63.0 (C-6'), 51.2 (C-6), 42.9 (C-5), 34.9, 33.6 (2 CH₂), 24.7, 24.1, 21.6, 20.1 (4 Me).

Acetylation (Ac₂O–pyridine) of crude 5 (10 mg) and CC on silica gel using CHCl₃–MeOH (50:1) produced the tetraacetate 5a (7 mg). $[\alpha]_D^{20} = -4.7^\circ$ (CHCl₃; *c* 0.7). $\lambda_{\text{max}}^{\text{CHCl}_3}$ nm: 241. ¹H NMR (CDCl₃): δ 1.06 (*s*, 5-Me_b), 1.08 (*s*, 5-Me_a), 1.12 (*d*, 3'-Me), 1.4–2.1 (*m*, H-1', H-2'), 2.00 (*d*, 3-Me), 2.01 (*s*, OAc), 2.04 (2*s*, 2OAc), 2.09 (*s*, OAc), 2.22 (*dd*, H-6b), 2.47 (*d*, H-6a), 3.65 (*m*, H-3'), 3.60–5.25 (*m*, H-1"–H-6'), 5.85 (*dq*, H-2'); *J*: 2,3-Me = 1.3; 2,6b = 0.8; 6a,6b = 18.0; 3',3'-Me = 6.2 Hz.

Hydrolysis of crude 5 (25 mg) and CC of the EtOAc extract on silica gel using CHCl₃–MeOH (15:1) yielded the aglycone 5b (6 mg). $[\alpha]_D^{20} = -17^\circ$ (MeOH; *c* 0.6). $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 243. ¹H NMR (CDCl₃): δ 1.06 (*s*, 5-Me_b), 1.10 (*s*, 5-Me_a), 1.24 (*d*, 3'-Me), 1.54 (*ddd*, H-2'b), 1.64 (*ddd*, H-2'a), 1.84 (*ddd*, H-1'b), 1.99 (*ddd*, H-1'a), 2.06 (*d*, 3-Me), 2.25 (*dd*, H-6b), 2.50 (*d*, H-6a), 3.80 (*dq*, H-3'), 5.86 (*dq*, H-2'); *J*: 2,3-Me = 1.4; 2,6b = 1.1; 6a,6b = 18.2; 1'a,1'b = 14.0; 1'a,2'a = 5.7; 1'a,2'b = 9.2; 1'b,2'a = 8.6; 1'b,2'b = 6.7; 2'a,2'b = 14.0; 2'a,3' = 8.6; 2'b,3' = 3.8; 3',3'-Me = 6.2 Hz. ¹³C NMR (CD₃OD): δ 200.4 (C-1), 171.3 (C-3), 126.4 (C-2), 78.9 (C-4), 68.8 (C-3'), 51.0 (C-6), 42.8 (C-5), 35.3, 35.1 (2 CH₂), 24.6,

24.0, 23.5, 21.8 (4 Me). MS agreed well with lit. [14]. D-Glucose (10 mg) was isolated from the aq. phase.

6. ¹H NMR (CD₃OD): δ 1.028 (*s*, 5-Me_a), 1.032 (*s*, 5-Me_a), 1.28 (*d*, 3'-Me), 1.92 (*d*, 3-Me), 2.14 (*dd*, H-6b), 2.52 (*d*, H-6a), 3.10–3.90 (*m*, H-2'–H-6'), 4.34 (*d*, H-1"), 4.42 (*m*, H-3'), 5.85 (*br s* H-1', H-2'), 5.86 (*dq*, H-2), *J*: 2,3-Me = 1.4; 2,6b = 1.0; 6a,6b = 17.0; 3',3'-Me = 6.4; 1",2" = 7.8 Hz. ¹³C NMR (CD₃OD): δ 201.2 (C-1), 167.2 (C-3), 135.4 (C-2'), 131.7 (C-1'), 127.3 (C-2), 102.9 (C-1"), 80.1 (C-4), 78.3, 78.1 (C-3', C-5'), 77.3 (C-3'), 75.4 (C-2'), 71.8 (C-4"), 63.0 (C-6'), 50.8 (C-6), 42.5 (C-5), 24.8, 23.5, 21.2, 19.6 (4 Me). λ_{max} and $[\alpha]_D$ showed good agreement with lit. [19]. Acetylation (Ac₂O–pyridine) of crude 6 (10 mg) and CC on silica gel using CHCl₃–MeOH (50:1) produced the tetraacetate 6a (6 mg). ¹H NMR (CDCl₃): δ 1.02 (*s*, 5-Me_a), 1.09 (*s*, 5-Me_a), 1.24 (*d*, 3'-Me), 1.89 (*d*, 3-Me), 2.01, 2.04, 2.05, 2.10 (4*s*, 4OAc), 2.24 (*dd*, H-6b), 2.43 (*d*, H-6a), 3.60–5.20 (*m*, H-1"–H-6'), 4.25 (*m*, H-3'), 5.77 (*d*, H-1'), 5.82 (*dd*, H-2'), 5.90 (*dq*, H-2); *J*: 2,3-Me = 1.4; 2,6b = 0.8; 6a,6b = 17.1; 1",2" = 15.7; 2',3" = 5.6; 3',3'-Me = 6.5 Hz.

Hydrolysis of crude 6 (25 mg) and CC of the EtOAc extract on silica gel using CHCl₃–MeOH (15:1) yielded the aglycone 6b (8 mg). ¹³C NMR (CD₃OD): δ 201.2 (C-1), 167.4 (C-3), 137.1 (C-2'), 130.1 (C-1'), 127.2 (C-2), 80.0 (C-4), 68.7 (C-3'), 50.8 (C-6), 42.5 (C-5), 24.6, 23.9, 23.5, 19.6 (4 Me). ¹H NMR, MS, $[\alpha]_D$ and mp agreed well with lit. values [23, 24]. D-Glucose (10 mg) was isolated from the aq. phase.

Acknowledgements—We thank the Swedish Council for Forestry and Agricultural Research for financial support. Thanks are also due to Professors Kjell Olsson and Olof Theander for valuable discussions. The MS were recorded by Suresh Gohil.

REFERENCES

1. Theander, O. (1982) *Sven. Papperstidn.* **85**, R64.
2. Shen, Z. and Theander, O. (1985) *Phytochemistry* **24**, 155.
3. Shen, Z. and Theander, O. (1985) *Phytochemistry* **24**, 364.
4. Lundgren, L. N., Shen, Z. and Theander, O. (1985) *Acta Chem. Scand.* **B39**, 241.
5. Theander, O. and Lundgren, L. N. (1987) *Proc. International Symposium on Chemistry and Utilization of Tree Exudates and Extractives*, Nanning, China, 23–30 November 1986 (in press).
6. Higuchi, R. and Donnelly, D. M. X. (1977) *Phytochemistry* **16**, 1587.
7. Denniff, P., Macleod, I. and Whiting, D. A. (1981) *J. Chem. Soc. Perkin I*, 1, 82.
8. Fukuzumi, T. and Katayama, Y. (1977) *Jpn Wood Res. Soc. J.* **23**, 214.
9. Harmatha, J., Lübke, H., Rybarik, I. and Mahdalik, M. (1978) *Collect. Czech. Chem. Commun.* **43**, 774.
10. Ibrahim, R. K. (1977) *Z. Pflanzenphysiol.* **85**, 253.
11. Freudenberg, K. (1959) *Nature* **183**, 1152.
12. Lundgren, L. N., Popoff, T. and Theander, O. (1982) *Acta Chem. Scand.* **B36**, 695.
13. Galbraith, M. N. and Horn, D. H. S. (1972) *Chem. Commun.* 113.
14. Bercht, C. A. L., Samrah, H. M., Lousberg, R. J. J., Theuns, H. and Salemink, C. A. (1976) *Phytochemistry* **15**, 830.
15. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1977) *Tetrahedron Letters*, 179.
16. Bhakuni, D. S., Joshi, P. P., Uprety, H. and Kapil, R. S. (1974) *Phytochemistry* **13**, 2541.
17. Kodama, H., Fujimori, T. and Kato, K. (1981) *Biol. Chem.* **45**, 941.
18. Tschesche, R., Ciper, F. and Harz, A. (1976) *Phytochemistry* **15**, 1990.

19. Pousset, J. L. and Poisson, J. (1969) *Tetrahedron Letters*, 1173.
20. Weiss, G., Koreeda, M. and Nakanishi, K. (1973) *Chem. Commun.* 565.
21. Galbraith, M. N. and Horn, D. H. S. (1973) *Chem. Commun.* 566.
22. Coke, L. B., Stuart, K. L. and Whittle, Y. G. (1975) *Planta* 127, 21.
23. Powell, R. G., Weisleder, D. and Smith, C. R. (1986) *J. Org. Chem.* 51, 1074
24. Takasugi, M., Anetai, M., Katsui, N. and Masamune, T. (1973) *Chem. Letters*, 245.